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1 Definitions

Be able to write precise definitions for any of the following concepts (where appropriate: both in
words and in symbols), to give examples of each definition, and to prove that these definitions are
satisfied in specific examples. Wherever appropriate, be able to graph examples for each definition.
What is/are:

1. a parametric curve? paramteric equations? a parameter?
How do they differ from their Cartesian counterparts?

2. a cycloid? Can it be parametrized? How?
3. an ellipse, a hyperbola, a parabola? How can each be parametrized?
4. polar coordinates? Relation to Cartesian coordinates? How do they differ?
5. a polar curve? Can all curves be represented as polar curves? In this context, what are the

Archimedian spiral, the 4-leaf rose, the figure-8 lemniscate, a cardioid, an asteroid?
6. a tangent line to a parametric curve? to a polar curve? to a Cartesian curve?

Do these tangents lines differ or are they the same line?
7. the concavity of a parametric curve?
8. the arc length of a parametric curve? of a polar curve?
9. a 3-dimensional coordinate system? What is R2? R3?

10. a vector ~v in R2 or in R3 from a geometric and from an algebraic point of view?
11. the sum and the difference of two vectors ~v and ~w: geometrically and algebraically?

How about the scalar product of a vector ~v with a scalar c?
12. the basic properties of addition, subtraction and scalar multiplication of vectors?

How do these properties resemble properties of the corresponding operations on real numbers?
13. the length of a vector ~v? How do we calculate it?
14. a unit vector? Can we re-scale all vectors to make them unit? How?

1These lecture notes are copyrighted and provided for the personal use of Fall 2020 Math 110 students only. They
may not be reproduced or posted anywhere without explicit written permission from Prof. Zvezdelina Stankova.
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15. the standard unit vectors in R2? in R3? Why are they so important?
16. a linear combination of vectors? How many ways can we express a vector as a linear combi-

nation of the standard unit vectors? Why?
17. a median and the centroid of a triangle? How are they related to our study of vectors?
18. the dot product of two vectors: algebraically and geometrically? How do we calculate it?
19. the cross product of two vectors: algebraically and geometrically? How do we calculate it?
20. the basic properties of dot and cross products, in relation to each other and in relation to the

other operations on vectors?
21. orthogonal vectors? How to determine if two vectors are orthogonal, using vector operations?
22. parallel vectors? How do we determine if two vectors are pointing in the same direction, using

operations on vectors? What are colinear vectors?
23. the angle between two vectors? How do we calculate the angle using the two vectors?
24. orthogonal vector and scalar projections of vectors? How do we calculate them?
25. direction angles and direction cosines of a vector?

What is the main relationship between the three directional cosines of a vector?
26. a 2× 2 matrix? a 3× 3 matrix? the determinants of such matrices?
27. co-planar vectors? When are three vectors co-planar?
28. the triple scalar product of vectors? What is it useful for?
29. the right-hand rule? What is it used for?
30. the point-slope formula? What kind of a geometric object does it describe?
31. parametric, vector, and Cartesian (symmetric) equations for a line in space?
32. the direction numbers of a line in space? Are they unique? Why do we need 3 such numbers?
33. a normal vector to a plane? vector, scalar, and linear equations for a plane in space?
34. the angle between two planes? the distance between two planes?
35. a cylinder? What are its base curve, its traces, and its ruling?

A cylinder can be thought of as the disjoint union of what objects? In how many ways?
36. a quadratic equation in three variables?

How do we transform it into the standard equations of quadric surfaces?
37. the equations for quadric cylindrical and non-cylindrical surfaces? How many are they? How

do we recognize each? What are their all possible traces? Why name them the way we do?
38. a scalar vs. a vector function? How do the latter relate to parametric curves?
39. the limit, continuity, derivative, and integral of a vector function?

Why do we say that they are defined component-wise?
40. the tangent vs. a secant slope at a point P on the graph of a function y = f(x)?

What is their relation to the derivative f ′(x) at P?
41. a helix? the twisted cubic? On which famous surfaces does each lie?
42. the tangent vector and tangent line for a vector function? the unit tangent vector?
43. the arc-length of a parametric curve? the arc-length function? How does it relate to velocity

and speed? What does it mean to re-parametrize wrt arc-length? Why is this parametrization
called “universal”? In what ways is it not unique?

44. an intrinsic feature of a curve? an extrinsic feature of a curve? a feature that is independent
or not of parametrization? Can you list all features of curves we have studied and split them
into intrinsic and extrinsic ones?

45. a smooth curve? What can we define on a smooth curve that cannot be well-defined on a
non-smooth curve? Are the circle, any helix, and the twisted cubic smooth? How about any
of the three projections of the twisted cubic onto the coordinate planes?

46. the curvature of a smooth curve? How does it depend on the parametrization of the curve?
How does it relate to the derivative of any unit tangent vector? to the tangent vector wrt to

2



2 Theorems

arc-length parametrization? to the derivative and acceleration vectors for any parametrization
of the curve?

47. the curvature of a circle? of a helix? of a plane curve? What are the extreme curvatures
along the twisted cubic or the regular cubic y = x3?

48. the normal and binormal vectors of a vector function? How do they relate to the (unit)
tangent vector? Which of them is independent of the parametrization?

49. the normal, osculating, and rectifying planes of a vector function? How do we picture them
in relation to the motion of a particle along the corresponding path? Which famous vector is
normal to each plane? What famous vectors does each plane contain?

50. the tangential and normal components of acceleration? On what does each component de-
pend? Which component is necessarily non-negative and why? Which component can be
negative and when does this happen? In which plane does the acceleration vector always lie?
Is acceleration independent of parametrization?

2 Theorems

Be able to write what each of the following theorems (laws, propositions, corollaries, etc.) says.
Be sure to understand, distinguish and state the conditions (hypothesis) of each theorem and its
conclusion. Be prepared to give examples for each theorem, and most importantly, to apply each
theorem appropriately in problems. The latter means: decide which theorem to use, check (in
writing!) that all conditions of your theorem are satisfied in the problem in question, and then
state (in writing!) the conclusion of the theorem using the specifics of your problem.

1. Conversions back-and-forth between Cartesian and polar coordinates.
2. Formulas for the following features of parametric curves and by polar curves:

• slopes of tangents to such curves;
• second derivatives;
• areas described by these curves, and areas between two such curves;
• arc lengths of such curves;
• surface area of solid of revolution given by such a curve.

3. Properties of the following operations on vectors (separately and in combinations):
• addition, subtraction, scalar multiplication; taking linear combinations;
• taking the magnitude of a vector;
• dot product; cross product.

4. Specials vector relations in a triangle: formulas for the medians and for the sum of
vectors from the centroid to each of the three vertices.

5. Law of Cosines in a Triangle.
6. Formula for the dot product: ~v ◦ ~w = |~v| · |~w| cosα.

• Corollary on how to calculate the angle between two vectors.
• Conditions for vectors to be orthogonal, pointing in the same or opposite directions,

making an acute or an obtuse angle.
7. Formulas for vector and scalar orthogonal projections of ~v onto ~w.
8. Formulas for direction angles and direction cosines:

• Expressing a vector using its direction cosines.
• Sum of squares of the direction cosines.

9. The Triangle Inequality: when is equality obtained?
10. Formulas for determinants of 2× 2 and 3× 3 matrices.

• Connection to cross products of vectors.
• Basic properties of determinants that are relevant to cross products.
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11. Formula for the length of the cross product: |~v × ~w| = |~v| · |~w| sinα.
• Corollary on how to calculate the angle between two vectors.
• Conditions for vectors to be orthogonal, parallel, or making an acute or an obtuse angle.

12. Formulas for:
• the areas of a parallelogram and a triangle; • for the volume of a parallelepiped;

13. Condition for three vectors to be co-planar: iff ~v ◦ (~w × ~u) = 0.
14. Equations for lines:

• in the plane: point-slope formula; Cartesian equation;
• in space: parametric, vector and Cartesian (symmetric) equations.

15. Equations for planes: vector, scalar, and linear equations.
• the angle between planes;
• distances from a point to a plane, and from a line to a plane, and between planes.

16. Standard equations for quadric surfaces:
• quadric cylinders; • non-cylindrical quadric surfaces.

17. Component-wise formulas for vector functions:
• limits, derivatives, integrals; • tangent and unit tangent vector.

18. Trigonometric identities.
(a) Half-angle formulas (deg. reduction): sin2 x = 1

2(1− cos 2x) and cos2 x = 1
2(1 + cos 2x).

(b) Double-angle formulas: sin 2x = 2 sinx cosx, cos 2x = cos2 x− sin2 x.
(c) Turning products into sums: sinx cos y = 1

2(sin(x− y) + sin(x+ y));
sinx sin y = 1

2(cos(x− y)− cos(x+ y)); cosx cos y = 1
2(cos(x− y) + cos(x+ y)).

19. Some formulas for arc-length and surface of revolution:
• If f(x) is a function on [a, b] such that f ′(x) is continuous on [a, b], then the arc length

of the curve y = f(x) is L =
∫ b
a

√
1 + (f ′(x))2 dx; and the surface area S of the solid

obtained by revolving y = f(x) about the x-axis is S =
∫ b
a 2πf(x)

√
1 + (f ′(x))2 dx.

• If ~r(t) is a vector function traced once by t ∈ [a, b], then its arc length is L =
∫ b
a |~r

′(t)|dt.
20. Differentiation Laws for vector functions: DL±; PR·c; PR·f(t); PR◦; PR×; CR.
21. Unit tangent, normal, binormal vectors: If ~r(t) is a smooth vector function, then

•
−→
T (t) = ~r ′(t)

|~r ′(t)| ; •
−→
N (t) =

−→
T ′(t)

|
−→
T ′(t)|

; •
−→
B (t) =

−→
T (t)×

−→
N (t).

22. Fundamental problems for vector functions: (assuming all vectors below exist)
• If |~r(t)| is a constant, how are the tangent ~r ′(t) and the position vector ~r(t) related?

• How about the unit tangent vector
−→
T (t) and its derivative

−→
T ′(t)?

• If ~r(t) 6= ~0 and ~r ′(t) exists, what is |~r (t)|′?
• Why is |

−→
T (t)×

−→
T ′(t)| = |

−→
T ′(t)|? Connection with

−→
N (t) and

−→
B (t)?

23. Relations with the arc-length function s(t):
• s′(t) = |~r ′(t)| is the speed along the curve;

• ~r ′(t) = s′(t) ·
−→
T (t); • ~r ′′(t) = s′′(t) ·

−→
T (t) + s′(t) ·

−→
T ′(t);

•
−→
T (s) = ~r ′(s); • L =

∫ b
a |
−→
T (s)| ds; • κ(s) = |

−→
T ′(s)| = |~r ′′(s)|.

24. Curvature: The curvature of a vector function ~r(t) is given by κ(t) = |
−→
T ′(t)|
|~r ′(t)| = |~r ′(t)×~r ′′(t)|

|~r ′(t)|3 .

In the special case of a plane curve y = f(x), the curvature equals κ(x) = |f ′′(x)|
[1+(f ′(x))2]3/2

.

25. Coordinate planes “in motion”: a(x− x0) + b(y − y0) + c(z − z0) = 0 where (x0, y0, z0)

is in the plane, and 〈a, b, c〉 =
−→
T ,
−→
B ,
−→
N for the normal, osculating, and rectifying planes.

26. Acceleration: ~a(t) = aT
−→
T + aN

−→
N . Moreover, with speed ν = s′(t) and curvature κ:

• aT = ν ′ = ~r ′(t)◦~r ′′(t)
|~r ′(t)| ; • aN = κν2 = |~r ′(t)×~r ′′(t)|

|~r ′(t)| .
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3 Problem Solving Techniques

1. Convert between coordinate systems
• (x, y) 7→ (

√
x2 + y2, arctan y

x) and (r, θ) 7→ (r cos θ, r sin θ).
2. Find Tangent Slopes/Lines to a Parametric Curve given by y = y(t) and x = x(t):

• If y′(t)
x′(t) is well-defined (i.e., both top and bottom quantities exist, are finite numbers, and

x′(t) 6= 0), this is the tangent slope.
• If x′(t) = 0 but y′(t) 6= 0, we have a vertical tangent line.

• If x′(t) = 0 = y′(t), apply LH to y′(t)
x′(t) and repeat the process for the resulting quotient.

3. Change lengths of vectors by dot products:
• |~v|2 7→ ~v ◦ ~v;
• |~v| 7→

√
~v ◦ ~v.

4. Constructing a Plane
1. Let P,Q,R be the three points given.
2. Construct the vectors ~PQ and ~PR.
3. Find the normal vector ~n = ~PQ× ~PR.
4. Let ~n = 〈a, b, c〉 and P = (x0, y0, z0). Then the plane containing P,Q,R is given by

a(x− x0) + b(y − y0) + c(z − z0) = 0.

It is common practice to move all the constants to one side to obtain the simplified
equation ax+ by + cz = d.

5. Find Distances
• Point to Point: The distance from a point P to a point Q is found by taking the

magnitude of the vector from P to Q i.e. | ~PQ|.
• Point to Line: Let P be a point and L be a line.

1. Choose a point Q on L and construct the vector ~PQ.
2. Find the vector ~v that is parallel to the line.

3. The distance is |
~PQ×~v|
|~v| .

• Point to Plane: Let P be a point and let P be a plane. Suppose the equation for the
plane is ax+ by + cz + d = 0 and P = (x0, y0, z0). Then the distance is given by

|ax0 + by0 + cz0 + d|√
a2 + b2 + c2

.

• Line to Line: Let L1 and L2 be the two lines.
1. Check if the lines intersect. If so, then distance is 0, otherwise move on to step 2.
2. Let ~v1 be the vector parallel to L1 and ~v2 be the vector parallel to L2.
3. Let ~n = ~v1 × ~v2. This vector is the normal vector to the plane containing L1 and

the plane containing L2 (so these planes are parallel).
4. Pick a point Q = (x2, y2, z2) on L2 and use the vector ~n to write the equation for

the plane P2 containing L2: ax+ by + cz + d = 0.
5. Pick a point P = (x1, y1, z1) on L1. Now apply the algorithm for point to plane

using P and P2.
• Plane to Plane: Let P1 and P2 be the two planes.

1. Choose a point P on P1.
2. Apply the algorithm for point to plane using P and P2.

6. Graph Quadric Surfaces
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1. Given a general equation, complete the square for the necessary variables i.e. the vari-
ables that have a squared term.

2. First consider the graph of the same surface that is centered at the origin and then shift
it accordingly.

3. By setting variables to appropriate constants, describe the resulting traces.
4. Note any values of x, y, or z that results in special traces e.g. a point.

7. Find Arc Length
1. Let ~r(t) be a vector valued function defined for α ≤ t ≤ β. Differentiate ~r(t) to obtain
~r′(t).

2. Evaluate |~r ′(t)|.
3. Then arc length is L =

∫ β
α |~r

′(t)|dt.
8. Calculating Curvature

1. Let ~r(t) be the given vector valued function.
2. Find ~r ′(t) and ~r ′′(t).
3. Then curvature is given by

κ(t) =
|~r ′(t)× ~r ′′(t)|
|~r ′(t)|3

.

9. Finding Components of Acceleration
1. Let ~r(t) be the given vector valued function.
2. Find ~r′(t) and ~r′′(t).

3. Then ~a(t) = ~r′′(t) can be decomposed as ~a(t) = aT ~T + aN ~N where aT = ~r ′(t)◦~r ′′(t)
|~r ′(t)| and

aN = |~r ′(t)×~r ′′(t)|
|~r ′(t)| .

4 Problems for Review

The exam will be based on Homework, Lecture, Section and Quiz problems. Review all homework
problems, and all your classnotes and discussion notes. Such a thorough review should be enough
to do well on the exam. If you want to give yourself a mock-exam, select 4 representative problems
from various HW assignments, give yourself 40 minutes, and then compare your solutions to the
HW solutions. If you didn’t manage to do some problems, analyze for yourself what went wrong,
which areas, concepts and theorems you should study in more depth, and if you ran out of time,
think about how to manage your time better during the upcoming exam.

4.1 Single-Variable Calculus in Other Coordinates

We looked at parametric representations of curves, polar coordinates, tangents to parametric and
polar curves, and integral calculus (areas, arc lengths, surface areas of solids of revolution) on
parametric and polar curves.

1. True/false practice:
(a) The equations x = r cos θ, y = 2r sin θ for some r > 0 represent an ellipse in polar

coordinates.
Solution: False. These equations are parametric equations for an ellipse; we’re given
x and y in terms of a parameter θ, and r is fixed here (“some r > 0”). Just because
you see a θ doesn’t immediately mean you’re in polar coordinates.

(b) The region 0 ≤ θ ≤ π/4, 0 ≤ r ≤ 2 is a circular sector.
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4 Problems for Review

Solution: True. The region is 1
8 of the circle with radius 2. You can think of regions

like this as “pizza slices.”

The circle r = 2 with the region 0 ≤ θ ≤ π
4 , 0 ≤ r ≤ 2 shaded in gray.

(c) In polar coordinates, instead of a vertical line test we have a “radial ray test;” a polar
curve where you can connect the origin and two points on the curve with a straight line
does not come from an expression of the form r = f(θ).

Solution: False. Consider the curve r = θ. The points with polar coordinates
(
π
2 ,

π
2

)
and

(
5π
2 ,

5π
2

)
are both along the line θ = π

2 and on the curve r = θ, but our curve is
still coming from an expression of the form r = f(θ).

The graph of r = θ. Note that the radial ray from the origin in the direction θ = π
2

intersects the curve twice.

(d) When finding the area between a parametric curve and the x-axis by setting up an
integral, you should be careful with the bounds of your integral to ensure you get the
right sign.
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4 Problems for Review

Solution: True. Consider as an example trying to find the area under the semicircle
x = cos t, y = sin t, 0 ≤ t ≤ π. We know since this semicircle lies above the x-axis that
we want the area to be positive. But if we blindly set up our integral as∫ π

0
y(t)

dx

dt
dt =

∫ π

0
sin t(− sin t)dt = −π

2
,

we will get a negative answer. This is because our technique of finding the area under
the cruve by finding the integral [dt] of y(t)dxdt is coming from expressing y implicitly
as a function of x and then using integration by substitution (i.e. making a change of
variables) to express y as a function of t instead of as a function of x. In the cartesian
setup, we want to be doing

∫ 1
−1 y(x)dx, and x = −1 when t = π, x = 1 when t = 0, so

the correct parametric integral to write down is∫ 0

π
y(t)

dx

dt
dt =

∫ 0

π
− sin2 tdt =

∫ π

0
sin2 tdt =

π

2
.

In practice, if you’ve sketched the region you’re trying to find the area of and know that
it lies above the x-axis (so the answer should be positive) but the answer you get when
you evaluate your parametric integral is negative, it means you’ve picked the wrong
bounds on t.

(e) There is nothing mysterious at all about our formulas for the arc length of parametric
and certain polar curves; they come from the usual cartesian formulas, our formulas for
tangent slopes, and integration by substitution.

Solution: True. For example, we have for a function y = F (x) the formula for arc
length between x = a and x = b is

∫ x=b

x=a

√
1 +

(
dy

dx

)2

dx.

If this same curve is represented as x = f(t), y = g(t), with g(α) = a, g(β) = b, we can
write this integral using integration by substitution as

∫ t=β

t=α

√
1 +

(
dy

dx

)2dx

dt
dt =

∫ β

α

√√√√1 +

(
dy
dt
dx
dt

)2
dx

dt
dt =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt,

which is our formula for the arc length of a parametric curve.
Any parametric curve can be broken up as a number of pieces which we can write
[implicitly] as y = F (x) along each piece, so we can do the above analysis on a bunch
of little pieces of our curve to make this analysis work even for parametric curves that
don’t pass the vertical line test.
The derivation for polar curves is similar and is an instructive exercise.

2. Sketch and describe in the words the regions in the plane defined by the following inequalities:
(a) 2 ≤ r ≤ 4;
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Solution:
The region is the annulus (region between two circles) with inner radius 2 and outer
radius 4.

(b) π ≤ θ ≤ 2π.

Solution: The region is the entire xy-plane.
3. Find three distinct representations, one of which has r < 0, of the point with Cartesian

coordinates (1,
√

3) in polar coordinates.

Solution: The cartesian coordinates (1,
√

3) have x2+y2 = 12+(
√

3)2 = 4, so they cor-

respond to a radius of r = 2. We also have that arctan y
x = arctan

√
3
1 = arctan

√
3 = π

3 ,

so one polar representation of this point is (2,
π

3
) . To find two more polar representa-

tions, we note that (r, θ) is the same point as (−r, θ+π), so (−2,
4π

3
) is another polar

representation of this point. A third we can find by noting that (r, θ) is the same point

as (r, θ + 2π), so (2,
7π

3
) is a third polar representation of this point.

4. What is the slope of the tangent line to the curve r = 4θ2 at the point with the Cartesian
coordinates (0, π)?

Solution: The cartesian coordinates (0, π) correspond to polar coordinates of (π2, π2 ).
Our curve is given by an equation of the form r = h(θ), so we can apply our formula
for the slope of a tangent line to a polar curve where r is a function of θ. We have

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
8θ sin θ + 4θ2 cos θ

8θ cos θ − 4θ2 sin θ

=
4π · 1 + π2 · 0
4π · 0− π2 · 1

= − 4

π
.

5. Find all points (x, y) in the plane where the curve x = 2t3 − 3t2, y = t4 − 4 has horizontal or
vertical tangents.
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Solution: We know that the slope of the tangent line to the curve will be

dy

dx
=

dy
dt
dx
dt

.

For this curve, this tells us that

dy

dx
=

4t3

6t2 − 6t
.

We will have a horizontal tangent if the slope is 0 and a vertical tangent if this expression
for dy

dx is of the form a
0 , a 6= 0. (In the case of 0

0 , we need to try something else, perhaps

L’hospital’s rule, to figure out what is happening). We see that the numerator dy
dt is 0

only when t = 0; at this time, the denominator is also 0, but we can cancel a factor of
t from the numerator and the denominator to get 4t2

6t−6 = 4·0
6·0−6 = 0. This tell us that

we have a horizontal tangent when t = 0, at which point we are at the point (0,−4)

in the plane. The denominator dx
dt is 0 when t = 0 or when t = 1. When t = 0, we have

already seen that we have a horizontal tangent; when t = 1, we have a denominator of
0 and a nonzero numerator, so we have a vertical tangent when t = 1. This tells us

that we have a vertical tangent at the point (−1,−3) in the plane.

6. Use the formula for surface area of solids of revolution of parametric curves to prove that the
surface area of a sphere of radius 1 is 4π.

Solution: The sphere of radius 1 is the solid of revolution formed by rotating the
semicircle with radius 1 above the x-axis around the x-axis. We can parametrize this
semicricle as x = cos t, y = sin t, 0 ≤ t ≤ π. Our formula for surface area of a solid of
revolution is ∫ β

α
2πy(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Using this, we see that the surface area of the sphere is∫ π

0
2π sin t

√
sin2 t+ cos2 tdt = 2π

∫ π

0
sin tdt

= −2π cos t
∣∣π
0

= −2π(−1)− (−2π · 1)

= 4π,

so the surface area of a sphere of radius 1 is 4π.

7. Consider the curve C described in polar coordinates by r = 2 sin θ.
a) Sketch C in the xy-plane. Indicate the interval for θ over which the curve is traversed

exactly once. Include all of your calculations.

Solution: This is the circle centered at (0, 1) with radius 1. The interval is [0, π)

b) Find the area enclosed by C.
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Solution: The area of the circle mentioned above is π. We can also see this by applying
the formula

A =
1

2

∫ π

0
r2dθ =

∫ π

0
2 sin2 θdθ =

∫ π

0
1− cos(2θ)dθ = π.

c) Prove that C is a circle by finding its Cartesian equation.

Solution: We have that

r = 2 sin θ ⇒ r = 2y/r ⇒ r2 = 2y ⇒ x2 + y2 − 2y = 0⇒ x2 + (y − 1)2 = 1,

as desired
8. Derive the formula for the surface area of a sphere or radius r = 5 by following the steps

below. Include all calculations and relevant explanations.
a) Sketch and parameterize a circle of radius r = 5 centered at the origin in the xy-plane.

Solution: The parametrization is x(t) = 5 cos t and y(t) = 5 sin t for t ∈ [0, 2π).

b) Now revolve the circle about the y-axis, and using your parameterization from part (a),
find the surface area of the resulting solid.

Solution:

S =

∫ 2π

0
2πy(t)

√
(x′(t))2 + (y′(t))2dt = 2π

∫ 2π

0
5 sin t

√
25dt = 50π

∫ 2π

0
sin tdt = 100π.

4.2 Vectors and the Geometry of Space

We looked at the geometry of three-dimensional space R3, vectors and vector addition, the dot
product, scalar and vector projection, direction cosines, the cross product, the determinant for-
mula for cross products, the scalar triple product, equations for lines in R3 (vector, parametric,
symmetric), equations for planes in R3, intersections of planes with lines and planes with planes,
distances from points to lines and planes.

1. True/false practice:
a) If you draw the positive x-axis going to the left along a sheet of paper and the positive y-

axis going down towards the bottom of the sheet of paper, then to get a set of coordinate
axes for R3, the positive z-axis would be coming straight up out of the paper.

Solution: True. This is what we get from the right-hand rule (by convention, we use
only right-handed coordinate systems where the positive x, y, and z axes satisfy the
right hand rule)

b) The expression ((~a ◦~b)~c) ◦ ~d makes sense.

Solution: True. The expression ~a •~b is a dot product of two vectors, which is allowed
(and gives us a scalar as its output). (~a •~b)~c is the scalar multiplication of the vector ~c
by the scalar ~a •~b, which is allowed (and gives us a vector as the output). The overall
expression, then, is the dot product of two vectors, which is allowed, so the expression
makes sense.

c) The cross product is associative.

Solution: False. A counterexample: let~i,~j,~k be the three standard unit vectors in the
positive x, y, and z directions. ~j × (~j ×~k) = ~j ×~i = −~k, while (~j ×~j)×~k = ~0×~k = ~0.

d) It makes sense to talk about the normal direction to a line in R3.
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Solution: False. A line in R3 is described by a single vector in the direction of the
line, as well as a point on the line. But we can have two non-parallel vectors that are
both perpendicular to a line in R3; for example, the x axis is a line, and the vectors
~j,~k in the positive y and z directions are both perpendicular to it but are not at all
the same direction.

e) One way to think about the equation ax + by + c = 0 as a line in the plane is that
it comes form knowing the vector 〈a, b〉 is orthogonal to the line and using some point
(x0, y0) on the line.

Solution: True. While this isn’t the usual way of thinking about equations of lines in
the plane, it is the 2-dimensional analogue of the expression ax+ by + cz + d = 0 for a
plane in R3. In particular, if we know that the vector 〈a, b〉 is perpendicular to a line
containing (x0, y0), then we have for any point (x, y) on the line,

〈a, b〉 • 〈x− x0, y − y0〉 = 0.

Expanding this dot product, we get

ax− ax0 + by − by0 = 0,

or, equivalently,
ax+ by + (−ax0 − by0) = 0,

giving us the form ax+ by + c = 0 for our line as desired.

2. Let ~u = 〈1,−1, 3〉, ~v = 〈0, 2,−1〉, ~w = 〈2, 0, 1〉. Evaluate ~u ◦ (~v × ~w).

Solution: We use the fact that the cross product distributes over addition, so that

~v × ~w = (2~j − ~k)× (2~i+ ~k)

= 2~j × (2~i+ ~k)− ~k × (2~i+ ~k)

= 4~j ×~i+ 2~j × ~k − 2~k ×~i− ~k × ~k.

We also know that
~i×~j = ~k,~j × ~k =~i,~k ×~i = ~j,

that ~a ×~b = −~b × ~a for any vectors ~a and ~b, and that the cross product of any vector
and itself is ~0. This gives

~v × ~w = −4~k + 2~i− 2~j −~0

= 2~i− 2~j − 4~k.

We can now evaluate the dot product of ~u and this vector, using the fact that the dot
product distributes over addition and that the dot product of any two elements of~i,~j,~k
is 0 if they are distinct and 1 if they are the same. This gives

~u • (~v × ~w) = (~i−~j + 3~k) • (2~i− 2~j − 4~k)

= 2~i •~i− 2~i •~j − 4~i • ~k − 2~j •~i+ 2~j •~j + 4~j • ~k + 6~k •~i− 6~k •~j − 12~k • ~k
= 2− 0− 0− 0 + 2 + 0 + 0 + 0− 12

= −12 .

12
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3. Let the vectors in the figure satisfy |~u| = 2, |~v| = 1, and ~u+ ~v + ~w = ~0.
a) What is |~w| equal to? Explain. (Hint: Express ~w in terms of the other vectors, and use

this in other parts of the problem too!)

Solution: We see that ~w = −~u− ~v so |~w|2 = (−~u− ~v) · (−~u− ~v) = |~u|2 +~|v|2 because
u · v = 0. Hence |w| =

√
1 + 4 =

√
5.

b) What is the dot product ~v ◦ ~w equal to? Explain.

Solution: ~v · ~w = ~v · (−~u− ~v) = −|~v|2 = −1.

c) What is the length of ~v × ~w? Explain.
(Hint: If α is the angle between the vectors, can you find cosα from something above?)

Solution: From above −1 = ~v · ~w = |~v||~w| cosα =
√

5 cosα. Thus sinα =√
1− cos2 α =

√
1− 1/5 = 2/

√
5. We took the positive square root because α ∈ [0, π].

Then |~v × ~w| = |~v||~w| sinα = 2.

4. Consider the line ` with symmetric equations given by

x− 1

2
=
y + 2

3
= z.

a) Is it parallel, perpendicular, or skew to the line whose parametric equations are x =
t+ 4, y = 2− t, z = t− 1?

13
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Solution: The first thing to do is to find the vector representing the direction of the
line `. The line ` is in the direction 〈2, 3, 1〉, as we can see by noting that the signs on
x, y, z in the symmetric equations above are all positive and that the denominators are
2, 3, and 1, respectively.
The second line is in the direction 〈1,−1, 1〉, as we can see by converting our parametric
equations to the vector equation

r(t) =

 4
2
−1

+ t

 1
−1
1

 .

The two directions are not parallel, as they are not scalar multiples of each other. We
see that 〈2, 3, 1〉 • 〈1,−1, 1〉 = 2− 3 + 1 = 0; this does not, however, tell us that the two
lines are perpendicular. Since we are working in R3, it is possible for two lines not to
intersect at all without the lines being parallel (this is what it means to be skew). So
we see if the two lines intersect.
Parametric equations for ` are x = 1 + 2s, y = −2 + 3s, z = s. To find a point of
intersection of ` and this second line, we try to solve the system of equations

1 + 2s = t+ 4

−2 + 3s = −t+ 2

s = t− 1.

Solving the second two equations together, we see that −2 + 3(t − 1) = 3t − 5 must
be equal to −t + 2, so that 4t = 7. Plugging t = 7

4 , s = 3
4 into the first equation, we

get 1 + 2 · 34 = 5
2 on the left-hand side and 7

4 + 4 = 23
4 on the right-hand side. This is

inconsistent, so we see that this system of equations does not have a solution and thus
that the two lines do not intersect.
Since the lines are nonintersecting and nonparallel, they are skew .

b) What is the distance from the origin to the line `?
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Solution: We will need to do a bit of trigonometry to figure this out, as we are trying to
find the distance of the perpendicular segment from (0, 0, 0) to the line `. The situation
is pictured below:

The setup for finding the distance from a point to a line.

To find the perpendicular distance, it is enough to find sin θ, where θ is the angle
between the line `, represented by the vector 〈2, 3, 1〉 and the vector ~v = 〈−1, 2, 0〉 from
a point on the line to the origin. Knowing the sine of this angle and the length of the
hypotenuse (in this case, |〈−1, 2, 0〉|) gives us the length of the perpendicular segment
from the origin to the line. But we can find sin θ by using cross products! In particular,
we have

|〈−1, 2, 0〉 × 〈2, 3, 1〉| = |〈−1, 2, 0〉||〈2, 3, 1〉| sin θ∣∣∣∣∣∣det

 ~i ~j ~k
−1 2 0
2 3 1

∣∣∣∣∣∣ =
√

12 + 22 + 02
√

22 + 32 + 12 sin θ

|2~i− (−1)~j − 7~k| =
√

5
√

14 sin θ√
22 + 12 + 72 =

√
5
√

14 sin θ
√

54 =
√

5
√

14 sin θ.

We are looking for |〈−1, 2, 0〉| sin θ, so we want
√

5 sin θ, which is equal to
√
54√
14

=
√
27√
7

=

3
√

21

7
.

c) Write an equation for a plane perpendicular to this line.

Solution: We know the direction the line ` is traveling, and we know a point on `.
Since (1,−2, 0) is on `, we can construct the plane containing (−1, 2, 0) and normal to
the vector 〈2, 3, 1〉 to get a plane perpendicular to `. The equation for this plane is

〈2, 3, 1〉 • 〈x− 1, y + 2, z〉 = 0

2x− 2 + 3y + 6 + z = 0,

so that
2x+ 3y + z + 4 = 0

is the equation for our plane.

5. In a trapezoid ABCD it is known that base AB is 10 cm and the base DC is 6 cm. Let M

15
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be the midpoint of side AD and N the midpoint of side BC. The segment MN is called the
midsegment of the trapezoid ABCD.

a) Write
−→
MN as a linear combination of

−→
AB and

−→
DC and, using vectors, prove that this

linear combination is correct.
Solution:

Notice
−→
MN=

−→
MA +

−→
AB +

−→
BN and

−→
MN=

−→
MD +

−→
DC +

−→
CN . Then

2
−→
MN=

−→
MA +

−→
MD +

−→
AB +

−→
DC +

−→
BN +

−→
CN=

−→
AB +

−→
DC

so
−→
MN= 1

2(
−→
AB +

−→
DC)

b) Prove that the midsegment MN is parallel to the bases of the trapezoid. Find its length.
(Hint: You may use part (a).)

Solution: Since
−→
AB //

−→
DC and |

−→
AB | = 10 and

−→
DC= 6 so

−→
AB= 5

3

−→
DC. Then

−→
MN= 1

2(53
−→
DC +

−→
DC) = 4

3

−→
DC. Thus

−→
MN //

−→
DC //

−→
AB and |

−→
MN | = 4

3 · 8 = 6 cm.

6. Consider the three points P = (1,−2, 0), Q = (−1, 0, 3), and R = (−3, 2, 0) in R3.
a) What is cos∠PQR?
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Solution: We know that

~QP • ~QR = | ~QP || ~QR| cos∠PQR.

We compute the vectors ~QP and ~QR first by taking the vectors from Q to P and Q to
R. We have

~QP = ~P − ~Q

= 〈1,−2, 0〉 − 〈−1, 0, 3〉
= 〈2,−2,−3〉

~QR = r− ~Q

= 〈−3, 2, 0〉 − 〈−1, 0, 3〉
= 〈−2, 2,−3〉.

Each of these vectors has length
√

22 + 22 + 32 =
√

4 + 4 + 9 =
√

17. We can compute
the dot product of the two vectors as

~QP • ~QR = 〈2,−2,−3〉 • 〈−2, 2,−3〉
= 2(−2) + (−2)2 + (−3)(−3)

= −4− 4 + 9

= 1.

This tells us that

cos∠PQR =
~QP • ~QR

| ~QP || ~QR|
=

1√
17
√

17
=

1

17
.

b) Find an equation for the plane containing the three points P,Q, and R.
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Solution: To find a plane, we need a point and a normal vector. Since we know
the three points P,Q,R in the plane, we know that the vectors ~QP and ~QR that we
computed above lie in the plane. Given two vectors that are not parallel, we can cook
up a third vector perpendicular to both of them by taking the cross product. Hence
~QP × ~QR will be perpendicular to the plane containing P , Q, and R. We compute the

cross product

~QP × ~QR =

∣∣∣∣∣∣
~i ~j ~k
2 −2 −3
−2 2 −3

∣∣∣∣∣∣
= 12~i− (−12)~j + 0~k

= 12~i+ 12~j.

So we want to find the plane perpendicular to the vector 12~i+ 12~j containing the point
Q = (−1, 0, 3). Using the fact that 〈12, 12, 0〉 and 〈x+1, y, z−3〉 must be perpendicular
for any point (x, y, z) in the plane, we have

〈12, 12, 0〉 · 〈x+ 1, y, z − 3〉 = 0

12x+ 12 + 12y = 0,

so that the equation
12x+ 12y + 12 = 0

is an equation for the plane containing P , Q, and R.
We can check our work by checking that P and R actually satisfy this equation; 12 ·
1 + 12 · (−2) + 12 = 0 and 12 · (−3) + 12 · 2 + 12 = 0, so we are good.

c) What is the area of the triangle PQR?

Solution: We know that the magnitude of the cross product of two vectors can be
interpreted geometrically as the area of the parallelogram with distinct sides given by
the two vectors. In particular, the area of a triangle with two sides given by two vectors
will be half the area of the corresponding parallelogram, so the area of the triangle
PQR is

1

2
| ~QP × ~QR| = 1

2
|12~i+ 12~j| = 1

2

√
122 + 122 =

1

2

√
288 =

1

2
(12
√

2) = 6
√

2 .

7. Consider the two planes x+ 2y + 2z + 4 = 0 and 3x− 4y + 12z = 0.
a) What is the cosine of the (acute) angle between the planes?

Solution: We find the cosine of the acute angle between the planes by finding the
cosine of the angle between their normal vectors. The two planes’ normal vectors are
〈1, 2, 2〉 and 〈3,−4, 12〉. The cosine of the angle is

〈1, 2, 2〉 • 〈3,−4, 12〉
|〈1, 2, 2〉||〈3,−4, 12〉|

=
1 · 3 + 2 · (−4) + 2 · 12√

12 + 22 + 22
√

32 + 42 + 122
=

3− 8 + 24√
9
√

169
=

19

39
.

b) Write symmetric equations of the line of intersection between the two planes.
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Solution: To describe a line in R3, we need two pieces of data: a point on the line
and a vector in the direction of the line. Let’s first find a vector in the direction of the
line. We know that the line, since it lies in both planes, is perpendicular to the two
planes’ normal vectors. So to find a vector in the direction of the line, it suffices to find
a vector perpendicular to both 〈1, 2, 2〉 and 〈3,−4, 12〉. We can find such a vector by
taking a cross product:

〈1, 2, 2〉 × 〈3,−4, 12〉 =

∣∣∣∣∣∣
~i ~j ~k
1 2 2
3 −4 12

∣∣∣∣∣∣ = 32~i− 6~j − 10~k,

so 〈32,−6,−10〉 is parallel to the direction of our line.
We now find one point on the line of intersection. An easy place to look for a single
point on a line is the line’s intersection with one of the coordinate planes. We will
try to find the point with z = 0 that lies on this line (in general, we know any line
will intersect at least one of the three coordinate planes). So we want a point with
z-coordinate zero lying on both the planes x+ 2y + 2z + 4 = 0 and 3x− 4y + 12z = 0.
This means we need to solve the system of equations

x+ 2y = −4

3x− 4y = 0.

Solving this system of equations, we see that x = −8
5 , y = −16

5 is the unique solution,
so the point (−8

5 ,−
16
5 , 0) lies on both planes and hence on the line of intersection of

the two planes.
We now write symmetric equations for the line of intersection of the two planes, noting
that this line goes through (−8

5 ,−
16
5 , 0) and is in the direction 〈32,−6,−10〉, by writing

the parametric equations

x = −8

5
+ 32t

y = −16

5
− 6t

z = −10t

and solving for t to get symmetric equations of the form

x+ 8
5

32
=
−16

5 − y
6

=
−z
10

.

8. Write an equation for the surface of revolution formed by rotating the curve x =
√

1 + y2

about the x-axis. What kind of surface is this?
Solution: Rotating the curve about the x-axis through R3 means the points on the
curve trace out through constant x planes circles of the form x =

√
1 + y2 + z2, as

rotating a graph x = f(y) about the x-axis replaces y with
√
y2 + z2. This is half of

a hyperboloid of two sheets, since we can rearrange the equation to x2 − y2 − z2 = 1,
but we are only working with the piece x =

√
1 + y2 + z2 and not the piece x =

−
√

1 + y2 + z2.
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9. One line L1 passes through the point P (1, 1, 0) and is parallel to the vector ~v = 〈1,−1, 2〉. A
second line L2 passes through the points Q(0, 2, 2) and R(1, 1, 2).

a) Find the intersection point of the two lines.

Solution: L1 = 〈1 + t, 1 − t, 2t〉 and the vector parallel to L2 is ~w = 〈1,−1, 0〉 so
L2 = 〈s, 2 − s, 2〉. Equating the lines component wise we see t = 1 and s = 2 so the
point of intersection is (2, 0, 2).

b) Find and equation of the plane P that contains these two lines.

Solution: Let ~n = ~v× ~w = 〈2, 2, 0〉. Then using the point P , the equation of the plane
is 2(x− 1) + 2(y − 1) + 0(z − 0) = 0 =⇒ x+ y = 2.

c) Find the distance from the origin to the plane P.

Solution: The distance is given by

|0 + 0 + 0− 2|√
1 + 1 + 0

=
√

2.

10. Consider the surface x = y2 + 4y + z2 + 5. Sketch the surface and indicate your reasoning.
Describe the cross-sections (traces) of the surface with planes perpendicular to any of the three
axes, and make sure that these features are reflected in your sketch. Are there any special
traces? What is the name of this surface? Include all relevant calculations and explanations.

Solution:

11. Consider the surface x2 − 4y2 + z2 + 4x − 8y − 6z = −13. Sketch the surface and indicate
your reasoning. Describe the cross-sections (traces) of the surface with planes perpendicular
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to any of the three axes, and make sure that these features are reflected in your sketch. Are
there any special traces? What is the name of this surface? Include all relevant calculations
and explanations.

Solution:

4.3 Calculus with Vector-Valued Functions

We looked at vector functions, limits of vector functions, derivatives of vector functions, unit tangent
vectors, differentiation laws (sum/difference rule, chain rule, product rules) for vector functions,
integrals of vector-valued functions, arc length of vector-valued functions.

1. True/false practice:
a) The domain of the function ~u(t) = ~v(t) · ~w(t) is [0, 2] if the domain of ~v(t) is t ≥ 0 and

domain of ~w(t) is t ≤ 2.

Solution: True. The domain of u(t) will be the intersection of the domains of ~v(t) and
~w(t), since for ~v(t) • ~w(t) to be defined we need both ~v(t) and ~w(t) to be defined, so
the domain of u will be the intersection of the domains of ~v and ~w.

b) The sum of two differentiable vector functions is differentiable.
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Solution: True. Since we differentiate vector functions by differentiating each of their
components, we can apply the differentiation laws for scalar functions to each of the
components to get differentiation laws for vector functions. In particular, this technique
allows us to show that

(
~v(t) + ~w(t)

)′
= ~v′(t) + ~w′(t), since the sum of two differentiable

scalar-valued functions is differentiable with derivative the sum of the derivatives of the
two summands.

c) To find the definite integral from t = a to t = b of a vector function ~r(t) = 〈f(t), g(t), h(t)〉,
we simply take the vector whose components are the definite integral

∫ b
a f(t)dt,

∫ b
a g(t)dt,

and
∫ b
a h(t)dt, respectively.

Solution: True. Integration of vector functions is done componentwise.

d) The arc length between two points in R3 of a curve given by a vector function depends
on the parameterization of the curve; if we replace t with 2t, we’ll double the arc length
since the new curve is going twice as fast.

Solution: False. The arc length of a curve is intrinsic; i.e. it is independent of the
parametrization. In particular, we can use integration by substitution to show that
reparametrization doesn’t change the value of the integral defining arc length.

e) When we renormalize a tangent vector to find a unit tangent vector to a curve at a given
point, it is okay if we multiply by −1 since multiplying a unit vector −1 gives a unit
vector so multiplying by −1 doesn’t change anything.

Solution: False. The unit tangent vector captures the instantaneous direction of travel
along a curve, so multiplying it by −1 would represent moving along the curve in the
opposite direction.

2. Two flies move through space with flight paths described by the vector functions ~r1(t) =
〈2t+ 1, 3 + cosπt, 4t〉 and ~r2(t) = 〈t, 3− sinπt, t2 − 2〉.

a) At the time t = 3, which fly is flying faster?

Solution: The speed of a particle moving along the path r(t) is |r′(t)|. The speeds at
t = 3 are r′1(3) and r′2(3). We have

r′1(t) = 〈2,−π sinπt, 4〉, r′2(t) = 〈1,− cosπt, 2t〉.

At time t = 3, we have

r′1(3) = 〈2, 0, 4〉, r′2(3) = 〈1, 1, 6〉.

These two vectors have lengths
√

22 + 02 + 42 = 2
√

5 and
√

12 + 12 + 62 =
√

38. Since√
38 > 2

√
5, we see that the second fly is moving faster than the first.

b) Do their paths intersect?
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Solution: We look for a point (x, y, z) = r1(t) = r2(s) for some (possibly distinct)
times t and s, since we are only looking for a point on both curves. This gives us a
system of equations

2t+ 1 = s

3 + cosπt = 3− sinπs

4t = s2 − 2.

Solving the first and third equations together, we see that 4t = (2t+1)2−2 = 4t2+4t−1,
so that 4t2 − 1 = 0. This tells us that either t = 1

2 (so that s = 2) or t = −1
2 (so that

s = 0). Plugging these into the second equation, 3 + cos π2 = 3, 3 − sin 2π = 3, so the
point (2, 3, 2) is on both curves r1(t) (at time 1

2) and r2(t) (at time s = 2). This tells

us that the flies’ paths do intersect .

c) Do the flies collide?

Solution: The flies don’t necessarily collide just because their paths intersect; to have
a collision, the flies need to be at the same point at the same time. In particular, if the
flies are at the same x-coordinate at the same time, then we must have 2t + 1 = t, so
that t = −1, but the y-coordinates at that time are 3− 1 = 2 and 3− 0 = 3, so the two
flies can’t be at the same x and y coordinates at the same time. Thus they cannot be
at the exact same point at any time; the flies don’t collide .

3. Find symmetric equations for the tangent line to ~r(t) = 〈3t2, 1+et−1, t−1〉 at the point (3, 2, 1).

Solution: The point (3, 2, 1) occurs at t = 1, since 1
t = 1 only when t = 1, and at

t = 1 3t2 = 3 and 1 + et−1 = 2. To find the tangent line, we need to find r′(1), as that
vector will be parallel to the tangent line. We simply differentiate each of the three
components to get that

r′(t) = 〈6t, et−1,− 1

t2
〉.

In particular, this tells us that r′(1) = 〈6, 1,−1〉. The tangent line to r(t) = 〈3t2, 1 +
et−1, 1t 〉 ata the point (3, 2, 1) is thus the line through (3, 2, 1) parallel to 〈6, 1,−1〉. The
parametric equations for such a line are x = 3 + 6t, y = 2 + t, z = 1− t, so solving for t
from each of the three equations, we get the symmetric equations

x− 3

6
= y − 2 = −(z − 1) .

4. Consider three vector-valued functions ~a(t),~b(t),~c(t) taking values in R3. What is the deriva-
tive of the triple product ~a(t) ◦ (~b(t)× ~c(t))?
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Solution: We use our product rules for vector products:

(~u(t) • ~v(t))′ = ~u′(t) • ~v(t) + ~u(t) • ~v′(t)

and
(~u(t)× ~v(t))′ = ~u′(t)× ~v(t) + ~u(t)× ~v′(t).

Combining these, we see(
~a(t) • (~b(t)× ~c(t))

)′
= ~a′(t) • (~b(t)× ~c(t)) + ~a(t) • (~b(t)× ~c(t))′

= ~a′(t) • (~b(t)× ~c(t)) + ~a(t) • (~b′(t)× ~c(t) +~b(t)× ~c′(t))

= ~a′(t) • (~b(t)× ~c(t)) + ~a(t) • (~b′(t)× ~c(t)) + ~a(t) • (~b(t)× ~c′(t)) .

5. A particle moves with position vector described by ~r(t) = 〈cos t, sin t, ln sec t〉 for 0 ≤ t ≤ π/4.
How far does the particle travel between t = 0 and t = π/4.

Solution: We have the arc length formula

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.

These componentwise derivatives are

dx

dt
= − sin t,

dy

dt
= cos t,

dz

dt
=
sect tan t

sec t
= tan t,

so our arc length is given by∫ π/4

0

√
sin2 t+ cos2 t+ tan2 tdt =

∫ π/4

0

√
1 + tan2 tdt

=

∫ π/4

0
sec tdt

= ln(sec t+ tan t)
∣∣π/4
0

= ln(
√

2 + 1)− ln(1 + 0)

= ln(
√

2 + 1) .

6. A spaceship is traveling along the twisted cubic C with position function ~r(t) = 〈t, t2, t3〉 for
all t ∈ R. Below, include all relevant calculations and explanations.

a) Find the tangential component of the spaceship’s acceleration along C at the origin.

Solution: First notice that r′(t) = 〈1, 2t, 3t2〉 and r′′(t) = 〈0, 2, 6t〉. These vectors
evaluated at t = 0 are 〈1, 0, 0〉 and 〈0, 2, 0〉, respectively. Then

aT =
r′(0) · r′′(0)

|r′(0)|
= 0.

b) Find the normal component of the spaceship’s acceleration along C at the origin.

Solution: aN = |r′(0)×r′′(0)|
|r′(0)| = |〈0,0,2〉|

1 = 2.
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4 Problems for Review

c) Write the spaceship’s acceleration vector at the origin in terms of the local coordinate
unit vectors ~T , ~N , and ~B.

Solution: a = aT ~T + aN ~N so a(0) = 0~T + 2 ~N = 2 ~N.

7. Prove, using the methods we learned in this course, that the tangent line at a point A to a
circle with center O is perpendicular to the radius OA.

Solution: Without loss of generality, we can assume our circle is centered at the origin
by picking our coordinates to have the origin as the center of the circle. We write
a vector-valued function in R2 representing the circle: r(t) = 〈r cos t, r sin t〉 where r
is the radius of the circle. We can find the tangent vector, r′(t), by differentiation:
r′(t) = 〈−r sin t, r cos t〉. The tangent line to the circle at a point is parallel to the
tangent vector, so to show that the tangent line at a point A is perpendicular to the
radius OA, it suffices to show that r′(t) ⊥ r(t), since the segment OA is represented by
the vector r(t) from the origin to the point. We evaluate the dot product r′(t) • r(t).
We have

r′(t) • r(t) = 〈−r sin t, r cos t〉 • 〈r cos t, r sin t〉
= −r2 sin t cos t+ r2 cos t sin t

= 0.

So at all times t, and thus at all points on the circle, r′(t) is perpendicular to r(t). This
shows that the radius OA is perpendicular to the tangent line at the point A.

4.4 Extra True/False Practice

1. True/false practice:
a) The vector function ~r(t) = 〈t, t2〉 contains more information than the Cartesian function

y = x2.

Solution: True. This vector function also tells us something about a direction of travel
along the curve (from x = −∞ to x = +∞) that is not captured by y = x2. Vector
functions also have a speed r′(t) associated with them (since they give parametrizations
of curves in the plane or in space) that simple Cartesian expressions lack.

b) Any three points in R3 determine a unique plane.

Solution: False. Three points that lie on the same line do not determine a unique
plane; for example, both the planes z = 0 and y = 0 contain the three points (0, 0, 0),
(1, 0, 0), and (2, 0, 0).

c) Any time dx/dt = 0 for a parametric curve, the curve has a vertical tangent.

Solution: False. If we have dy
dt = 0 at that time as well, then we might have a horizontal

tangent or a tangent of any other slope as well.

d) If ~u(t) and ~v(t) are vector functions, then ~u(t)× ~v(t) is a vector function.

Solution: True. The cross product of two vectors is a vector, so the cross product of
two vector functions will be a vector function.

e) Any line in R3 will intersect one of the three coordinate planes x = 0, y = 0, z = 0.

Solution: True. A line is given by a vector equation of the form r(t) = r0 + t~v, where
~v is a nonzero vector. In particular, one of the x, y, and z components of ~v must be
nonzero, so that t times that component is going to be equal to the opposite of that
component of r0, and hence either x, y, or z will be zero at some point on the line.

25



4 Problems for Review

f) Let P1, P2, and P3 be three distinct planes in R3. Then the intersection of all three
planes, P1 ∩ P2 ∩ P3 is either the empty set, a single point, or a line.

Solution: True. The intersection P1 ∩ P2 is either a line or the empty set, since P1

and P2 aren’t the same plane. If P1 ∩ P2 is a line, it can intersect the plane P3 either
in a line (if the line happens to lie in P3), a point (if the line pierces through the plane
P3), or the empty set. This tells us that P1 ∩ P2 ∩ P3 is either the empty set, a single
point, or a line.

g) We say that the graph of xz = 1 in R3 is a cylinder even though the traces for constant
y are hyperbolas and not circles.

Solution: True. Note that a cylinder is, for us, includes surfaces in R3 of the form
f(x, y) = 0, f(y, z) = 0, and f(x, z) = 0 (as well as other surfaces where all the slices
along a particular direction are identical curves), not just circular cylinders.

h) The arc length formula for a vector function ~r(t) in R3, L =
∫ β
α |~r(t)|dt, is true for the

same reasons as our arc length formulas for cartesian, polar, and parametric curves even
though, when written this way, there is no square root sign.

Solution: True. The length of the vector r′(t) is

√(
dx
dt

)2
+
(
dy
dt

)2
+
(
dz
dt

)2
, which is

analogous to our formulas for cartesian, polar, and parametric curves.

i) We can parametrize a hyperbola much the same way as we parametrize an ellipse,
replacing cos with cosh and sin with sinh.

Solution: True. The curve x = cosh t, y = sinh, where cosh is the hyperbolic cosine
function and sinh is the hyperbolic sine function, parametrize the hpyerbola x2−y2 = 1.

j) if the lines with vector equations ~r0 + t~v and ~r1 + s~w are skew, there is nothing we can
say about ~v × ~w.

Solution: False. Since the lines are skew and not parallel, we know that ~v × ~w is
nonzero, so we can say something about ~v × ~w.

k) The centroid of a triangle can be found by intersecting just two of the medians of the
triangle.
Solution: True. The three medians interesect at one point.

l) If a parametric curve given by x = f(t), y = g(t) satisfies g′(0) = 0, then the curve has
a horizontal tangent at t = 0.

Solution: False. Let x = t3, y = t3 then g′(0) = 0 but x = y is not horizontal.

m) The curve with vector equation ~r(t) = 6 t5~i− t5~j + 3 t5~k is a line.

Solution: True x = −6y, z = −3y and t5 goes over R once

n) Among quadric surfaces, there are three types of “elliptic hyperboloids,” but none of
them is called by this name.
Solution: True Cone and hyperboloid of one sheet and two sheets.

o) The polar curves r = 1− cos(2θ) and r = cos(2θ)− 1 have the same graph.

Solution: True

(r, θ) = (−r, θ + π) = (cos 2θ − 1, θ + π) = (cos(2(θ + π))− 1, θ + π) = (cos 2θ1 − 1, θ1)

p) For any vectors ~u, ~v, and ~w in R3 we have ~u× (~v × ~w) = (~u× ~v)× ~w.

Solution: False the cross product is not associative.

q) If ~v and ~w are vectors in the plane, then the equality |~v+ ~w| = |~v|+ |~w| is satisfied only
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5 No Calculators during the Exam. Cheat Sheet and Studying for the Exam

when ~v and ~w are in a special position relative to each other.

Solution: True Equality iff ~v//~w.

r) There are at least three “product rules” for differentiation that involve vector functions.

Solution: True Dot product, cross product, scalar function multiple of vector function.

s) If |~r(t)| = 7 for all t, then ~r ′(t) ⊥ ~r(t) for all t.

Solution: True proved in class

t) Different parameterizations of the same smooth curve result in identical unit tangent
vectors on the curve.
Solution: False reverse direction results in negative of the unit tangent.

u) Given a curve x = f(t) and y = g(t), with both f ′(t) and g′(t) continuous and both
f(t) ≥ 0 and g(t) ≥ 0 for a ≤ t ≤ b, the two formulas for the surface areas of the solids
of revolution about the x-axis and the y-axis differ only in one place.
Solution: True One integrand has 2πx and the other has 2πy.

v) It is straightforward to convert from Cartesian to polar coordinates; but we have to pay
attention to the quadrant where the point is when converting from polar to Cartesian
coordinates because we could end up with the wrong angle θ.

Solution: False The terms are switched
w) A shortcut formula for the tangential component of the acceleration vector can be turned

into a shortcut formula for the normal component by changing one vector multiplication
operation to another in the numerator and adding absolute values there to ensure that
we will obtain overall a number.
Solution: True Changing the dot product to cross product.

x) The equation defining any cylinder in R3 is necessarily missing one of the variables x, y,
or z that corresponds to the ruling of the cylinder.

Solution: False If the cylinder does not have center axis parallel to a coordinate axis
then we could have all three variables.

y) Exactly one of the following two statements is true:
(a) |~v ◦ ~w| = |~v| · |~w| for some vectors ~v and ~w in R3;
(b) |~v − ~w| = |~v| − |~w| for all vectors ~v and ~w in R3.

Solution: True. The first statement is true if the vectors are parallel or one of the is
the zero vector. The second statement is only true for antiparallel vectors so not all
vectors.

5 No Calculators during the Exam. Cheat Sheet and Studying for the Exam

No Calculators will be allowed during the exam. Anyone caught using a calculator will be disqual-
ified from the exam.

For the exam, you are allowed to have a “cheat sheet” - one page of a regular 8.5 × 11 sheet.
You can write whatever you wish there, under the following conditions:

• The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copy-
ing, (and for that matter, no tearing pages from the textbook and pasting them onto your
cheat sheet.) DSP students with special writing or related disability should consult with the
instructor regarding their cheat sheets.

• You must submit your cheat sheet on Gradescope before the exam.
• Any violation of these rules will disqualify your cheat sheet and may end in your own dis-

qualification from the exam. I may decide to randomly check your cheat sheets, so let’s play
it fair and square. :)

27



5 No Calculators during the Exam. Cheat Sheet and Studying for the Exam

• Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare
your cheat sheet at least 2 days in advance. This will give you enough time to become familiar
with your cheat sheet and be able to use it more efficiently on the exam.

• Do NOT overstudy on the day of the exam!! No sleeping the night before the
exam due to cramming, or more than 3 hours of math study on the day of the
exam is counterproductive! No kidding!

These review notes are copyrighted and provided for the personal use of Spring 2021 Math 53 students only.
They may not be reproduced or posted anywhere without explicit written permission from Prof. Stankova.

28


	Definitions
	Theorems
	Problem Solving Techniques
	Problems for Review
	Single-Variable Calculus in Other Coordinates
	Vectors and the Geometry of Space
	Calculus with Vector-Valued Functions
	Extra True/False Practice

	No Calculators during the Exam. Cheat Sheet and Studying for the Exam

